特殊的函數
- \((\log n)^{\log n}\)
\[ \Rightarrow n^{\log \log n} \\ 令 \;d \;為一常數\\ \because d\times \log n < \log \log n\times \log n \\ \log \log n \times \log n< \log n \times \log n \\ \log n \times \log n < n \\ n < n \times \log 2 \\ \therefore n^{\log \log n} > n^d \\ n^{\log \log n} < 2^n \]
- \((\log n)!\)
\[ \because n! \approx n^{n+\frac{1}{2}} \cdot e^{-n} \quad(Stirling \;approximation)\\ \therefore (\log n)! \approx (\log n)^{\log n + \frac 12}\cdot e^{-\log n} \\ \Rightarrow (\log n)^{\log n + \frac 12}\cdot n^{-\log e} \\ \Rightarrow (\log n)^{\log n + \frac 12}\cdot n^{-1} \\ \Rightarrow n^{\log \log n} \cdot (\log n)^{\frac12}\cdot n^{-1} \\ \therefore (\log n)! < (\log n)^{\log n} \]
- \(n^{\frac {1}{\log n}}\)
\[ \because n = 2^{\log n} \\ \therefore (2^{\log n})^{\frac{1}{\log n}} \Rightarrow 2^{\log n \cdot \frac{1}{\log n}} \\ \Rightarrow 2^1 = 2 \]
- \(2^{\sqrt{2 \log n}}\)
\[ 2 = n^{\frac{1}{\log n}} \\ \Rightarrow n ^{\frac{\sqrt{2\log n}}{\log n}} \\ \because 0 < \frac{\sqrt{2\log n}}{\log n} < 1 \\ \therefore \log n < n^{\frac{\sqrt{2\log n}}{\log n}} < n^c, \forall c \in Z^+ , c \geq 1 \]
- \((\log \log n)!\)
f(n) log f(n) n! \(n\log n \notin O(\log n)\) \(2^n\) \(n\log 2 \notin O(\log n)\) \((\log n)!\) \((\log n)\cdot \log \log n \notin O(\log n)\) \(n^2\) \(2\log n \in O(\log n)\) \(\log n\) \(\log \log n \in O(\log n)\) \(2^4\) \(4\log 2 \in O(\log n)\) \(\Rightarrow\) f(n) 為「Polynominal bound」\(\Leftrightarrow\) \(\log f(n) \in O(\log n)\)
\[ \Rightarrow \log((\log \log n)!) = (\log \log n)\cdot(\log \log \log n) \\ \Rightarrow (\log \log n)\cdot(\log \log \log n) \leq (\log \log n)^2 \\ \Rightarrow (\log \log n)\cdot(\log \log \log n) = O(\log n) \\ \therefore (\log \log n)! \;為\;「Polynominal \;bound」 \]