特殊的函數
- (logn)logn
⇒nloglogn令d為一常數∵d×logn<loglogn×lognloglogn×logn<logn×lognlogn×logn<nn<n×log2∴nloglogn>ndnloglogn<2n
- (logn)!
∵n!≈nn+12⋅e−n(Stirlingapproximation)∴(logn)!≈(logn)logn+12⋅e−logn⇒(logn)logn+12⋅n−loge⇒(logn)logn+12⋅n−1⇒nloglogn⋅(logn)12⋅n−1∴(logn)!<(logn)logn
- n1logn
∵n=2logn∴(2logn)1logn⇒2logn⋅1logn⇒21=2
- 2√2logn
2=n1logn⇒n√2lognlogn∵0<√2lognlogn<1∴logn<n√2lognlogn<nc,∀c∈Z+,c≥1
- (loglogn)!
f(n) log f(n) n! nlogn∉O(logn) 2n nlog2∉O(logn) (logn)! (logn)⋅loglogn∉O(logn) n2 2logn∈O(logn) logn loglogn∈O(logn) 24 4log2∈O(logn) ⇒ f(n) 為「Polynominal bound」⇔ logf(n)∈O(logn)
⇒log((loglogn)!)=(loglogn)⋅(logloglogn)⇒(loglogn)⋅(logloglogn)≤(loglogn)2⇒(loglogn)⋅(logloglogn)=O(logn)∴(loglogn)!為「Polynominalbound」